
IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

23 WUST MAMM steasi Whente, M.Y. 14500
(716) 872-4503
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadion de microreproductions historiques

The Institute has attempted to obtain the best orlginal copy svailable for filming. Features of this copy which may be blbliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual mothod of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommageCovers restored and/or laminated/
Couverture restaurde et/ou pelliculte
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en coulour
Coloured ink (I.e. other than blue or black)/
Encre de couleur (I.e. autre que bleue ou noire)
Coloured plates and/or Illustrations/
Planches ot/ou illustrations en coulour
Bound with other material/
Relić avec d'autres documents
Tight binding may cause shadows or distortion along interlor margin/
La reliure serrée peut causer de l'ombre ou de la diatortion lo long de la marge intórieure

Blank leaves added during restoration may
appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans le toxto, mais, ioreque cola était possible, ces pages n'ont pas óté filmbes.

Additional commonts:/
Commentaires suppl6́mentaires:

L'Institut a microfllmé le melleur exemplaire qu'il lui a été possible de se procurer. Les détalls de cot exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reprodulte, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages ondommagées
Pages restored and/or laminated/
Peges restaurées et/ou pelliculśesPages discoloured, stained or foxed/
Pages décolorbes, tachetées ou plquéesPages detached/
Pages détachés

Showthrough/
TransparenceQuality of print varies/
Qualit' inégaie de I'mpression

Includes supplementary material/
Comprend du matérial supplémentaireOnly adition availabla/
Soule édition disponible
Pages wholly or partially obscured by errata sllips, tissues, etc., have been refilmed to onsure the best poseible image/ Les pages totalement ou partioilement obscurcies par un fouillot d'errata, une pelure. etc., ont cté filimbes a nouveau de façon a obtenir la moilloure image poselble.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au toux de réduction indiqué ci-deesous.

The copy filmod here has been reproduced thanks to the generosity of:

Library of Congress
 Photoduplication Service

The images appearing hare are the beat quality possible considoring the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and anding on the last page with a printed or illuatrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and onding on the last pase with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichover applies.

Mape, plates, charts, etc., may be filmod at different reduction ratios. Those too large to be ontircly included in one oxposure are filmed beginning in the upper loft hand corner, left to right and top to bottom, as many frames as required. The following diagrame illustrate the mothod:

L'oxempiaire filmé fut reproduit grace dila générosité de:

Library of Congress Photoduplication Service

Les images sulvantes ont óté reprodultes avec le plus grand soin, compte tenu de le condition et de la nettetd de l'oxemplaire filmb, ot en conformit's avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papler est imprimbe sont filmés on commencant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'iliustration, solt par lo second plat, selon lo cas. Tous les autres exemplaires originaux sont filmés en commencant par la premidre page qui comporto une emprointe d'impression ou d'llustration ot on terminant par la derniare page qui comporte une telle emprointe.

Un des symboles sulvants apparaitra sur la derniäre image de chaque microfiche, solon le cas: lo symbole \longrightarrow signifie "A SUIVRE", ie symbole ∇ signifie "FIN".

Les cartes, planches, tabloaux, etc., pouvent dtre filimés à des taux de réduction diffírents. Lorsque lo document est trop grand pour etre reproduit on un soul clicht, il cat filmb a partir do l'angle supérieur gauche, de gauche à droite. ot do haut on bas, on prenant lo nombre d'images nécesealre. Les diagrammes suivants illustrent la múthode.

REPORT

TO THE

(SECRETARY OF THE NAVY
 REGBNT DPPROVEMENTS IN ASTRONOMICAL ASSTROIIRNS.

BY SIMON NEWOOMB,
 PROT:

WASEINGTON: GOVEENMERT PRINTIMG OFIFIOA. 1884.

SENATE.

No. 96.

MESSAGE
 from the
 PRESIDENT 0F THE UNITED STATES, TRANSMITTING

A communication from the Secretary of the Navy, including a report on

 recent improvements in astronomical instruments.Frbruary 12, 1884.-Read and referred to the Committoe on Naval Affairs and ordered to be printed.

To the Senate:

I transmit a communication, under date of the 8th instant, addressed to me by the Secretary of the Nâvy, covering a report of Prof. Simon Newcomb, United States Navy, on the sabject of recent improvements in astronomical observatories, instruments and methods of observation, as noted daring his visit to the principal observatories of Europe, in the year 1883, made in pursuance of orders of the Navy Department.
The request of the Secretary is commended to the consideration of Congress.

EXRCUTIVE: MANSION,
February 11, 1884.

CHESTER A. ARTHUR.

\qquad
Navy Departminet, Wustinington, February 8, 1884.
SIR: I have the honor to transmit the report of Prof. Simon Newcomb, United States Navy, on recent improvements in astronomical observatories, instruments and methods of observation, as noted during a visit to the principal observatories of Enrope in the spring and snmmer of 1883, made in pursuance of orders of this Department. The report is considered of sufficientimportance to be laid before Congress and printed.

Very respectfully, your obediert servant,
WM. E. OHANDLER,
Scoretary of the Navy.

The Peeridernts

Nautical Almanac Offigr, Navy Department, Washington, D. O., January 29, 1884.

SIR: In pursuance of orders from the Department I visited certain of the leading observatories on the continent of Europe during the past year for the purpose of collecting information respecting the most recent improvements in astronomical instrumeuts and methods of observation. I now have the honor to submit the following report apon the kuowledge thus gained. The heads of this report are not arranged with respect to the different establishments visited, but with respect to the different kinds of instruments, all that relates to each instrument being coliected together, even when the material was gathered at varions places.
The establishments visited from which valuable information was gathered, were the observatories of Paris, Nenchatel, Geneva, Vienna, Berlin, Potadam, Leyden, and Strassburg, and the workshop of the Messrs. Repsold at Hamburg. At the latter place I enjoyed the opportanity of meeting Director Struve, of the Pulkowa Ubservatory, and of discassing with him and the Repsolds the plans of the great 30 -inch refractor, the objective of which had just been completed by the Messrs. Olark.
It is both a duty and a pleasure to acknowledge the very cordial reception I met from the directors and astronomers of the varions observatories, and the facilities which were everywhere afforded me for the execation of the mission with which I was charged. In every case the fullest liberty was accorded me to make as critical an examination of every point as circumstances permitted.
In this report it is not practicable to present that exhaustive discussion of the subject of recent instruments which might have been erpected, for the reason that within the limited time at my disposal it was not possible to prepare the detailed drawings and make the teats which would have been necessary for that purpose. I shall therefore confine my report to such special points as appear most important to persons who may intend to found new observatories, or to design or purchase new astronomical instruments.

THE GBEAT VLENRA TKHESCOPE.

Among the instruments which I have examined, that to which most interest now attatches is the great telescope recently completed for the Imperial Observatory at Vienna, by Howard Grubb, esq., of Dublin'. It is the largest refracting telescope in actual ase at the present time,

EPARTMENT, January 29, 1884. t I visited certain of ope during the past ting the most recent hods of observation. ort upon the knowlnot arranged with with respect to the ach instrument being gathered at various
nformation was gathGeneva, Vienna, Berrkshop of the Mesars. ed the opportunity of tory, and of discussreat 30-inch refractor, by the Messrs. Olark. the very cordial reof the varions obsere afforded me for the d. In every case the cal an examination of
at exhaustive discusmight have been exat my disposal it was make the tests which hall therefore confine important to persons to design or purchase

PRE.

sd, that to which most intly completed for the Hrubb, esg., of Dublin'. se at the present time,
being of one inch greater aperture than that of the Naval Observatory at Washington. The contract was made with Mr. Grubb in 1875, but, owing to difficulties in procuring glass disks of the necessary size and purity, it was not completed until 1881. Further delay occnrred in mounting, so that it was barely ready for active work at the time of my visit in April last. I made as careful and critical an examination of ite working as was possible dnring the unfavorable weather which prevalled at that tinue at Vien.aa. My examination was principally in the nature of a comparison of its working with that of the Washington telescope.

General style of mounting. - In its main features the telescope is mounted on the same fundamental plan as that at Washington, each being on the German plan, with the German system of counterpoises and with a steel tube. In both, the rapid motion in declination is by means of a rope attached to the two ends of the tube; that in right ascension by a system of wheel-work. In both, the clock-work is in the picr below the instrument. The leading points of difference are, that the mounting of the Vienna telescope is much larger, stronger, and heavier in all ite parts, that the appliances for using it are more elaborate and numerous, and that an elaborate system of friction rollers in declination is provided, while the Washifigton telescope has none. A more convenient system of illuminating the field and the divisions on the several circles has also been introduced. As a piece of mechanical engineering it reflects great credit ppon its deaigner and constructor.

Dase of motion.-In moving the Vienna telescope one is at first struck with the fact that mere weight is a serious drawback in the management of such an instrument, but, when the motion is once commenced, the movement in right ascension is almost as easy as in the Washington telescope. It is, however, very different in declination. For reasons which neither Dr. Woiss nor myself was able to perceive, the friction rollers seemed to be of little benefl in easing the motion in declination, which was much more diffoult than in the Washington telescope, and, in fact, quite a tax upon the strength of the observer at the eye-piece.

The quick motion for setting in right ascension is made below the ond of the polar axis by turning a steel stearing-wheel. This appliance is in every way inferior to the ayntem at Washington, where the asme motion is effected by an endless rope hang over a grooved wheel which the observer pulls hand over hand. By this arrangement the obverver at the Washington telescope uan make the required motion, with his
eyes fixed upon the telescope or upon the vernier, as he may desire, and without giving any thought to the motion of the hands. Bnt the handles of the steel wheel are much less convenient to take hold of than a rope; and if the motiou is at all rapid the operator cannot turn his eyes to the moving telescope without danger of his knuckles being struck by the steel handles as he attempts to take hold of them without look. ing. The necessity for eare in this respect makes the motion hesitating and laborious, at lenst to one unaceustomed to it.

The clock motion.-On the system of the Messrs. Clark, applied in the Washiugton telescope, the screw which turus the sector doen not take hold of the circumference of the latter directly, but gears into a complete worm-wheel, around the axis of which is wrapped a pair of brass or steel bands whieh also enwrap the arc of the sector. By this arrangement the toothed wheel makes a nearly complete revolution while the sector is moving through its are, and the effect of the small nnavoidable irreg. ularities in the working of the screw is diminished in the ratio of the arc of the sector to the circumference of the wheel. Whatever advantages this arrangement may have in small instruments, I think that in large ones they are more than counterbalanced by the irregularities arising from the elasticity of the band, combined with the variations of friction, and the action of wind and other forces operating to vary tha uniform motion of the telescape. Owing to this elasticity, the effect of the wind or of any slight pressure by the observer on the eye-piece is many times greater in the Washington than in the Vienna instramont. But it did not appear to me that the firmness of the connection in the latter instrument between the support of the tarning screw and the tube of the telescope was as great as was expected by those who lay stress on large and atable mountings. I found that by a simple pressure of the thumb-nail upon the tube of the Vienna telescope the pointing in right ascension could be changed by several seconds so as to throw an object entirely away from the wire.

The main question is, however, the steadiness of motion when no pressure whatever is applied by the observer, and so far I have found no large telescope which is entirely satisfactory. The Vienna telescope was not supplied with a micrometer at the time of my examination, so that I could not test its motion as thoroughly as I wished to; but by bringing the planet Uranas in the edge of the feld I found that when the olock was going there was a constant irregular movement in right ascension, the amount of which I estimated as between one and

TRUMENTS.

Is ho may desire, and 10 hands. But the to takehold of than cannot turn his eyes uckles being struck f them without look. the motion hesitating

Clark, applied in the seetor does not take gears into a complete a pair of brass or steel By this arrangement ation while the sector all unavoidable irreged in the ratio of the el. Whatever advanments, I think that in by the irregularities with the variatious of operating to vary tha elasticity, the effect of ver on the eye-piece is he Vienna instrumont. f the connection in the turning screw and the ected by those who lay that by a simple pressina teleacope the pointeveral seconds so as to ess of motion when no and so far I have found The Vienna telescope ine of my examination, hly as I wished to; but f the field I found that t irregular movement in ted as between one and
two secomds of are. This movement hud no reguiar period, and therefore did not seem to be connected with any defect in the figure or motion of the serew. lis irregular period, if I may use the term, varied from the smallest appreciable amount to two or three seconds of time. Its most probable cunse seemed to be the variable friction of the motion in right ascension and especially of the friction rollers by which the polar nxis is supported at its lower end. A similar irregularity is noticeable in the Washington telescope, but when the conditions are favorable it is leas than that noticed at Vienna. On the other hand, the effect of wind is much grenter in the cuse of the Washington telescope.

Arrangement of sector.-In Mr. Grubb's large telescope, an attempt is made to give greater stability to the screw by having the ends of its axis to fit into firm supports in the massive base of the telescope, thus rendering it incnpable of any motion except that of turning. The screw cannot therefore be unlocked from the sector as in the instrnments by other makers. When the sector reaches the end of its motion, it has to be turned back by giving a rapid backward motion to the screw itself, for which special appuratus is provided. From what I have already said, I am of opinion that this arrangement offers no advantage to com. pensate for the trouble which it causes the observer.

Slow motion.-The slow motion in right ascension in the Vienna telescope is endless, instead of being confined between narrow limits as that at Washington. This is a decided improvement, saving the observer much loss of time from the motion running out, which it is sure to do from time to time.

Illumination.-The apparatns for illuminating the field of the micrometer was not in perfect order at the time of my visit, so that I cannot report upon it in this connection. It is in its general character similar to the system. adopted by the Messrs. Repsold, of which I shall speak hereafter. The illumiuation of the divisions of the setting circles leaves nothing to be desired.

Minor points.-In the preceding remarks, I have indicated what may be considered fundamental points affecting the use of the Vienua telescope. There are, however, a number of minor points, which are of almost equal importance, so far as the practical use of the telescope is concerned. As the instrument now stands, the drawback which struck me most was the absence of any rough setting either in right ascension or declination, and the impossibility of seeing, even approximately, the
pointing in declination, except when the observer was at the eye-piece. This want, combined with the great force necessary to move the telescope in decination, makes its pointing a difficult and tronblesome operation. The observer must first set the telescope by pure guess-work. He has then to mount to the eye-piece, wherever it may be, look into the microscope, and note the reading of the circle. He has then to withdraw his eye, and by considerable muscular exertion to make another guess, which he again tests by reading the circle. Thus the pointing is to be made by a series of trials which are so troublesome that I found the observers were in the habit of monuting to the top of the cylinder of the dome and finding the pointing in declination by moving the telesoope aronnd the horizon.

I remark, in this connection, that the Washington telescope has a coarse setting which the observer can read from any point below the telescope with the aid of an opera-glass. This setting is sufficiently accurate to bring any object whose position is known into the fleld of view of the finder, and near its center.

Oljective.-The proper figuring of an objective so as to give the best possible image, is justly considered the most difficult task in the construction of a large telescope. Especial interest, therefore, attaches to Mr. Grubb's success with the objective. The atmospheric conditions during my visit were unfavorable to the finest tests, but I succeeded in making such examination as the cironnstances admitted of en three evenings. On the first trial, the image was found to be defective, owing to a want of adjustment of the glass itself. This was corrected next day by Director Weiss. On the second trial I found a well-marked spherical aberration, which seemed, however, to be very regular from center to circumference. But there had been a fall of temperature and the dome had been opened only a short time; circumstances under which the Washington telescope always exhibited the same phenomena. On the third evening, the dome bad been opened long enough to nearly equalize the internal and external temperatures. So far as I could judge the character of the image was perfect, there being no appearance of those rings of different focal length, which are so often found in large objectives. As I had not used a large telescope for some eight years, I could not feel that my judgment was of the most critical kind, but I am persuaded that if any defecte exist, they are so minute as not to interfere in any important degree with the finest performance of the instrument.

The color correction is less than in the Washington telescope. The result is that the blee areole around brilliant objects is much lees striking.

CRUMENTS.

vas at the eye-piece. ry to move the teleIt and troublesome by pure guess-work. t may be, look into He has then to withon to make another Thus the pointing blesome that I found top of the cylinder by moving the tele-
ton telescope has a any point below the etting is sufficiently own into the field of

0 as to give the best cult task in the conherefore, attaches to nospheric conditions is, but I succeeded in dimitted of en three o be defective, owiug was corrected next found a well-marked be very regular from Il of temperature and astances under which me phenomena. On ng enongh to nearly. 30 far as I could judge ng no appearance of often fonnd in large ir some eight jears, I sritical kind, but I am ute as not to interfere ce of the instrument. gton teleacope. The is much less striking.

the great domes at paris and vienna.

The proper performance of a large telescope is so much affected by the character of the dome in which it is placed, that the latter may be regarded as of equal importance with the mounting of the telescope. All my experience, however, leads me to the conclusion that there is no decided superiority in any special form of dome, but that the principal difference in the working arises from the quality of the workmanship. In choosing among a number of proposed forms we can only say that that which is best constructed is the best.

The Vienna dome was constructed by Mr. Grubb. It is built of iron, is 45 feet in external diameter, and weighs fifteen tons. Its working leaves nothing to be desired, except that its great weight renders its motion somewhat cumbrous. By moving it a short distance it appeared that one'man could turn it in eight minutes. Mr. Grubb says that when first mounted a weight of seven pounds on the rope was sufficient to start it. I did not test this by actual trial, but cannot resist the conclnsion that much more than seven pounds is now reqnired.

The drum of the dome is of thick massive brick-work. I cannot but regard this sort of base as objectionable, even when pierced with numerous openings, as in the present case, owing to the difficulty of securing equable temperatures inside and outside.

Heretofore three methods of supporting a turning dome have been proposed:
I. Cn wheels, fixed either to the dome or to the base on which the dome rulls.
II. On a system of rollers connected by a live ring.
III. On cannon balls.

I conceive that the choice should lie between the last two. The can-non-ball system works the best of all so far as ease of motion is concerned; its drawback is the difficulty of keeping the balls at anything like equal distances apart. The system of rollers in a live ring was in. vented by Mr. Grubb, and is employed at Washington as well as at Vienna. It has the advantage of always working well, but is more troublesome in construction aud requires more force than cannon balls.

To these three isystems the French astronomers propose, in their new great dome, to add a fourth, by floating the dome in an anuular trough forming the top of the drum. The base of the dome will then be a floating annular caisson. It would be hasardons to predict in advance how
this ingenions plan will work. It will certainly have the advantage that a slow motion can be given with less expenditure of power than on any other system; but if the motion is at all rapid I am inclined to suspect that the friction of the fluid will be equal to that of the rollers on the other system. The difficulty which I should principally fear is the leaking of the caisson. The freezing of the water will be avoided by impregnating it with chloride of magnesium. It is intended to construct a dome on this principle 20 meters in diameter for the great refracting telescope now being constructed. It is feared, however, that the practical completion of the work will be long postponed, owing to the necessity of finding a better fonndation for the structure than is now afforded by the grounds of the observatory.

the great rusgian telescope.

In 1879 Privy Counselor Otto Von Struve, director of the Pulkowa Observatory, visited this country and contracted with the Messrs. Olark for the construction of an objective 30 inches in aperture. It was compleced and delivered during the year 1882. The monnting is now being completed by the Messrs. Rapsold, of Hamburg. Although still unfinished, I was desirons of gaining all the information possible respecting its construction, and therefore visited Hamburg for the purpose of examining its parts. The following are some essential points in the structure:

The most striking feature of the instrament will be the absence of friction rollers from the declination axis. With so large an instrument the friction on the declination axis will be too great to admit of the telescope being conveniently turned either by hand or by a rope attached to the two ends, as at Washington and Vienna. The quick motion in declination will be given by a system of cog-wheels turned by an axis passing throngh the polar axis of the instrument and coincident with it. This axis will be turned by a crank at the lower end, or by the observer taking hold of the circumference of a wheel, at choice. Although the turning of the crank is a more convenient motion for the purpose than that of taking hold of the handles of a steering.wheel, I do not consider it so convenient as pulling a rope. This system of wheel-work. will also be connected with the axis of a crank at the eye-piece which the observer can take hold of and turn without leaving the eye-end of the telescope. A second crank will be furnished for the motion in right ascension.

STRUMENTS.

have the advantage diture of power than apid I an inclined to to that of the rollers ald principally fear is water will be avoided It is intended to coneter for the great re. feared, however, that ; postponed, owing to structure than is now

OPE.
rector of the Pulkowa with the Messrs. Clark perture. It was com. mounting is now being Although still unfinon possible respecting for the purpose of extial points in the struc-
will be the absence of so large an Instrument sat to admit of the teleor by a rope attached
The quick motion in eels turned by an axis it and coincident with wer end, or by the ob1, at choice. Although notion for the pnrpose eering-wheel, I do not system of wheel-work at the eye-piece which leaving the eye-end of for the motion in right

Instead of using a sector for the clock motion the screw will gear into a complete whoel about two meters in diameter. The trouble of having to turn the sector back will thas be avoided. The illumination of the finding circles and the arrangements for reading them will, in their results, be similar to those used on other large telescopes; that is, the arrangement will be such that the observer can read either circle from the eye-piece. The system of illuminating the field wires, micrometer, position circle, \&c., though extensively employed in Europe, is so little known in this country that attention should be called to it. The side of the telescope at a convenient distance above the eye-end is pierced by an opening on the opposite side from the decliuation axis. Through this opening passes a conical tube parallel to the declination axis. At the outer end of this tube is a reflector inclined at an angle of 45 degrees to the axis of the cone, but turning on an axis coincident with that of the cone. The illumiuating lamp shines upon this refiector and turns upon the same axis with it. It is also hung npon gimbals so as to turn upon a secondary axis coincident with the axis of its own line of light. The resnlt of this arrangement is that the lamp always hangs vertically, whatever the position of the telescope, and that the horizontal beam of rays thrown from it always strikes the mirror at an angle of $\mathbf{4 5}$ degrees in such a way as to throw the light directly through the conical tube and into the telescope.

The slightly divergent beam which fills the cone is divided into two or three concentric portions. One of these is reflected upward to the object-glass, and by reflection from the glass itself illnminates the field of view. Another portion shines upon four whitened surfaces around the sides of the miorometer, by which both sets of wires are illuminated. The portion of light which is not needed for this purpose is so urranged as to illuminate the two verniers of the position circle and the heads of the micrometer. So far as I could judge, the working of this plan leaves nothing to be desired in the way of convenience to the observer.

Worthy of special attention are the eje-piece micrometers now made by the Messrs. Repsold. They include every contrivance necessary for rapid and convenient use.

Support of the polar axis.-Another Important feature, which has been applied by the Repsolds in their other large instruments, is the method of supporting the polar axis. This axis has to bear a large part of the instrnment, connterpoises included. As ordinarily made, it is necessarily subject to an end thrust equal, in onr latitnde, to two-thirds the

10 IMPROVEMENTS IN ASTRONOMICAL INSTRUMENTS.

weight of the instrument. How to support this thrust without interfering with the ease and freedom of motion has been one of the difficult problems in mounting a telescope. In the Repsold instrament the thrust is nearly avoided by supporting the polar axis upon a vertical friction-wheel under the center of gravity of the entire instrument. Connterpoises can be placed at the lower end of the axis so as to balance the instrument apon this wheel. So far as I can judge, this plan leaves nothing to be desired.

PRAOTICAL CONOLUSIONS.

I have been led by the examination above described, combined with some experience in the ase of the Washington telescope, to some conclusions respecting the most appropriate features in the mounting of an instrument of the larger size. They may be here enumerated for the consideration of those engaged in constructions of this kind.
I. I think that in order to secure the necessary stiffness with the least weight the axes shonld be hollow. The material can then be made comparatively thin. It is true that the larger the axis the greater the friction. But the mass of metal in the interior of the axis contribntes so little to its stiffiness that the external diameter will have to be increased very little to secure the same stiffiness with the hollow axis as with the solid one.
II. It is not worth while to supply the deolination axis with friction rollers unless experiment and research shall show that they can be made more effective than they appear to be in the Vienna instrument.
III. The best quick motion in right ascension is that adopted in the Washington telescope, where the observer pulls an endless rope hand over haud, and can lock and anlock the gearing which connecta the turning-wheel with the telescope at pleasure.
IV. If, as is possible, the quick motion in declination, by means of a loose rope attached to the two ends of the telescope, requires too strong a pull, the best method of giving this motion is through a gearing turned by an axis passing centrally through the polar axis on the Repsold plan. But it is preferabie to have this motion made by turning a crank or pulling a rope rather than by taking hoid of a wheel.
V. Coarse divided wheels should be supplied, so that the observer while tarning the instrument can constantly see its approximate pointing. It is better if this coarse reading can be made with the naked eye, as is the case in the right ascension movement of the Washington tele-
scope. The declination circle being further from the observer, it has to be read with an opera-glass if more than a coarse fraction of a degree is required. By such an arrangement the telescope can always be set by the quick motion so nearly that any object sought shall be in the field of view of the finder. In nine cases out of ten this will be all that is required in practical use. It should never be forgotten that in all quick motions it is very desirable that the observer shall be able to keep his eye upon the movements of the telescope itself in order to save him from any apprehension, even a groundless one, that something may be going wrong.
VI. The slow motion should if possible be endless. There is no difficulty in making it so in right ascension ; though there may be in declination.
VII. When the instrument is so large that there is an interval of three feet or more between the center of the polar axis and the side of the tube, the serew which communicates the clock muvement should be geared into a complete circle rather than into a sector. The nse of the metal band to multiply the effective radius of the wheel offers no advantage in the case of large instruments to compensate for the disadvantage of want of stability arising from elasticity of the band and its fastenings.
VIII. In this connection should be considered the question of applyign the system of Aing, which consists in giving a clock-motion to the verniers of the right-ascension circle so that their position shall represent aidereal time. Every practical astronomer is familiar with the trouble in setting an ordinary equatorial, arising from the necessity of having to calculate the constantly varying hour angle of the object on which he points. With the Greenwich arrangement there is no such tronble. The clamping-wheel being once set to sidereal time, the observer has only to set the other one to the constant right ascension of the olject. It is true that practieal difficulty arises in the usual construction, owing to the fact that the vernier on the gear-wheel will from time to time be on every point of th circle. But this difficulty can, I think, be obviated by appropriate arrangements.
1X. A clock motion which can be kept up by water or other power is greatly preferable to any eystem which requires an assistant to wind up a weight.
X. The entire practicability of illuminating the divisions of the circlea bya lamp and of reading these divisions from the eye-end of the telescope
has been 80 completely demonstrated that all large instruments should be supplied with this arrangemeut. It can hardly be doubted that electric lights will hereafter take the place of lamps for this purpose.
XI. The system of illuminating wires, field, micrometer-head, \&c., by a single lamp, which shall be vertical in all positions, has been so perfected by the Repsolds that it leaves nothing to be desired.
XII. The Washington plan of having the whole micrometer plate, including both fixed and movable wires, moved by a fine screw which has not necessarily a divided head, offers such a convenience in setting that it should always be adopted.
XIII. The old system of having a single finder on that side of the telescope which is opposite the declination axis becomes very inconvenient in a large jnstrument, owing to the necessity of setting the slit in the dome not only to the telescope bat to tise finder. The plan adopted in the Vienna telescope of having two finders, of which one shall be above and the other below the telescope when the latter is in the meridian, obviates this difficulty and should always be adopted.

REFLEOTING TELESCOPES IN FRANOE.

It is well known to all who have given attention to this subject that the optical performance of great reflecting telescopes has uever been proportional to their size, and that the mechanical difficulties of keeping a large reflector in proper figure in different positions have been apparently insurmountable. A plan of supporting a large mirror, devised by the Messrs. Henry, has been adopted in Paris, which it is hoped may obviate this difficulty. It consists, in principle, in supporting the mirror upon a mass of metal of a form similar to that of the mirror, the snrface of which is ground to fit the lower surface of the mirror with accuracy when the latter is in proper shape. If the mirror rested directly in contact with this second srirface no advantage would be gained, since the backing itself would bend as readily as the mirror. Therefore between the two is inserted a thin stratum of some elastic substance. M. Henry has fonnd a sheet of fine flannel to give the best results. The effect of the sheet is to diminish the flezure of the mirror by a fraction depending npon its stiffness and npon the elasticity of the fiannel. Theoretically it may be considered imperfect, because, iu order to act, some stiffiess is required in the mirror itself. A perfectly flexible mirror woald bend jnst as much with the flannel as without it. But flexure of the mirror can, it appears to me, be reduced to quite a small

sATRUMENTS

ge instruments should y be doubted that elec. for this purpose. crometer-head, \&c., by tions, has been so perbe desired.
e micrometer plate, ina fine screw which has enience in setting that
er on that side of the ecomes very inconveny of setting the slit in ler. The plan adopted rhich one shall be above ter is in the meridian, opted.
rande.
ion to this subject that scopes has never been ul difficulties of keeping itions have been appararge mirror, devised by hich it is hoped may oba supporting the mirror the mirror, the surface 18 mirror with accuracy irror rested directly in would be gained, since mirror. Therefore beo elastic substance. M. the best results. The the mirror by a fraction lasticity of the flannel. ecause, in order to act, A perfectly flexible mir8 without it. But flex. educed to quite a small
fraction of its amount. Moreover, I see no insuperable objection to the superposition of two systems of the kind, the mirror resting upon a stiff disk which is itself supported upon a second one.

This plan has bern entirely successful in the cases in which it has been applied, mirrors up to 12 inches in diameter showing not the slightest flexure when moved into all practical positious. Unfortnnately it has not yet been tried with reflectors of a larger size.
the nquatorial coude.
By applying the simple method just described for mountiug mirrors, an eqnatorial snrpassing all others in convenience of use has been put into operation at the Paris Observatory. The plan of having a telescope of which the tube itself should be the polar axis, so that the eye-piece should constantly point towards the north pole, is quite familiar to astronomers. The plan heretofore proposed is this:

Below the object-glass, which in the northern hemisphere wonld point towards the south pole, is to be placed a reflector capable of turning round an axis at right angles to that of the telescope while the latter turns upon its own axis. The latter motion would the measure right ascension and the revolution of the murror would be one-half the chauge of the declination. This plan is sabject to the inconvenience that, in order to look near the south horizon, the mirror would have to be mach elongated, while the view around the north pole would al ways be cut off by the intervention of the telescope itself.

In the equatorial coude this diticulty is obviated by the use of a second reflector. The telescope, as its name indicates, is elbow-shaped. Its lower part consists of an arm at right angles to the axis. At the elbow is fixed a mirror, from which the light is reflected at an angle of 45 degrees. At the outer end of the arm is a second reflector, also at an angle of 45 degrees, and turning upon a central axis of this arm. By its motion, the field of view of the telescope will sweep over a belt of uniform width from the pole to the horizon, so that its position angle will correspond to declination. By turning the whole instrument on its axis the field of view will sweep through a zone of constant declination. The object-glass is in the arm between the two reflectors. The angle of reflection from each mirror is constantly 45 degrees.

The advantage of this construction is, that the observer does not have to follow the eye-piece of his telescope, but always sits in a fixed position in a comfortable room. All the motions and all the readinge are
made as he sits at the eye-pieve. The amount of work of a certain class that can be done with the telescope is thus greatly increased. The form is, however, inadmissible in an instrument in which the highest optical power is aimed at, owing to the loss of light by the double refiection. In a large instrument, I should also fear injury to the images from the bending of the mirror, but no such effect shows itself, at least in any striking degree, in the Paris instrument, which is of about ten English inches apertnre.

THE ETRAESBURG MERIDIAN OIROLE.

This instrument is commonly considered to embody the latest conceptions in astronomical mechanios. Its general design is founded on that adopted in the great meridian circle of the Harvard Oollege Observatory which was constructed by Troughton and Simms, of London. The original design of the latter instrument is, it is understood, largely due to the late Professor Winiock. The most essential moditication of the older plan is that the Y^{\prime} s and the reading microscopes, instead of being anpported upon piers of stone, are borne by a massive metal fonndation, the tops of the piers being below the level of the bottoms of the circles. The drawbacks arising from the unequal contraction and expansion of the stone piers, under the influence of variations of temperature, are thus almost entirely avoided, because the metallic supports rapidly assume the temperature of the surronnding air and of the instrument.
Every part of the instrument bears the impress of the though't and care devcted to its construction both by the makers (the Messrs. Repsold) and by Professor Winnecke, the director of the observatory. Even the form of the piers of masonry which support it and its collimators is highly original. The base of the principal pier is smaller than usual, and the amount of material in it is still further diminished by building it in the form of a Greek cross. The collimators are supported on oflindrical piers of the usual construction. Fach of these three piers is protected from changes of temperature by having a hollow cylinder of brick built up around it from the ground. The thickness of the wall of this cylinder is that of one brick. To insure stability the different eylinders are connected together by brick arches, but these arches do not exert any pressure upon the interior piers supporting the instrument, which rests only on their foupdation. A degree of stability is thas secured which 1 believe has never before been reached.
But this may be in great part due to the excellence of the foundation.

NSTRUMENTS.

work of a certain class ∇ increased. The form tch the highest optical the double retlection. , the images from the itself, at least in any of about ten English

BOLE.

rody the latest concepign is founded on that vard Oollege Observmms, of London. The aderatood, largely due al modification of the copes, instead of being sive metal foundation, bottoms of the circles. ion and expanaion of 'temperature, are thus pports rapidly assnme - instrument.
es of the thonght and (the Messrs. Repsold) servatory. Even the and its collimators is is smaller than usual, minished by building are anpported on cyof these three piers is g a hollow cylinder of lickness of the wall of ility the different cylIt these arches do not orting the instrument, ie of stability is thus sched.
nce of the fonndation.

The observatory building rests upon a stratum of gravel so ciean and pure that in case of a flood in the Rhiue the water permeates through the gravel to the base of the piers. It might be supposed that water thns penetratiag the foundation would produce an injurious effeet upon the stability, but such is not fonnd to be the case. The fact that gravel forms the best foundation ior an astronomical instirument has long been understood by those who have given attention to the subject. But I do not know of any other case in which the saturation of the gravel with water has been experienced.
I may mention in this connection that a solid bed-rock might be even better than gravel were it covered with so deep a layer of soft earth that ic would not be afiected by daily or annual changes of temperatare. Experience has, however, shown that for want of these conditions being fulfiled a solid rock forms a very ansafe foundation. An interesting example of this is afforded by the observatory at Neuchatel, which is erected at the base of the Jura Mountains. The annual change in the pointing of the meridian circle is so great that Dr. Hirsch has recently published an investigation of the subject, showing that the mountain undergoes an annual change to an extent which has never before been remarked.
In order to obtain an accurate estimate of the stability of the Strassbarg instrument, I requested the acting director, Dr. Schar, to allow me to transcribe the instrumental corrections during as long a period as practicable. The following are the values of the three instrumental constants which depend on the deviation of the axis of rotation from a true east and west line. Column i gives the level correction; n, the distance of the line of collimation east of the pole; m the deviation of the same lize at its point of intersection with the equator. Of these constants n is more accurately determined than either of the others, and its atability affords a teat of the sitability of the inatrument both in level and aximuth.

	1.	n.	m.
$\begin{aligned} & 1882 . \\ & \text { Aug. } 24 \end{aligned}$	0.13 +.13	0.18 +.18	. 0.01
	+.29		
	$+.09$	+.00	+.04
Sept. 1	+.00 +.01	+.18	+. 11
	+.03	+.09	$\pm .06$
9	+.02	+. 20	-. 10
19	+.01	+.08	-. 08
25	-. 01	$+.02$	+. 01
${ }^{25}$	+. 01	$\pm .01$	+.00
Oct. 4	$+.23$	$+.07$	+.28
$\begin{array}{r} 7 \\ 13 \end{array}$.00 +.08	+.05	-. 05
17	+.00	-. 04	+.17
19	. 00	$+.05$	-. 06
21	+.01	+.04	-. 03
23	+.06	$\pm .02$	+ +13
26	-. 01	+.08	-
28	+.01	$\underline{+.03}$	+. 04
30	+.04	+.12	-. 08
31	+. 03	+.00	-. 01
Nov. 1	+.05	+.05	+. 03
1	$+.01$	+.01	. 00
3	+.00	+.05	-. 06
6	+.03	+.08	-. 02

It will be seen that if we take the mean value of $\boldsymbol{n}, \boldsymbol{0}, 05$, as a constant for the four months the average deviation of the observed values from this mean will be less than 0 0.05. A portion of these deviations are due to errors of determination and the accidental deviations of a temporary character due to changes in the temperature of the different parts of the instrument, produced by the impacts of air currents.
The stability of the uadir point appeared much less satisfactory. This correction was not determined with sufficient regularity to admit of its changes being the subject of a positive calculation, and Dr . Schur expresised himself not entire!y satisfied of the accuraoy of the determipations. It seems scarcely possible that the polsr pointing of the instrument conld be so steady if the nadir point were subject to consider. able clranges.
The stone piers are terminated on top by horizontal faces, in which are set the two iron supports of the $Y^{\prime} s$ and of the microscopes. The base of each is an iron frame 18 inches from east to west, by 24 inches from north to south, which is set on the top of the stoue and held in place by feing bedded in cement. Upon this sets the base of the microscope holder, which rests on three feet, and may be adjusted horizontally by screws. I shonld myself suppose that greater security against acci-
dentul ehange would have been secured if the top face of the frame had each been planed to tit the base of the holder inatead of having the latter on feet, provided some side aupport were added to guard against any posaible minute rocking motion.
The microscopes are carried on the external surface of a cylinder, which is cast in the same piece with the base last described.
The fulerum on whinh reste each lever supporting the weights of the instrument at one end and the counterpoice at the other is itself sup. ported upon the cylinder carrying the microscopes. This feature of the instrument has been objected to on the gronnd that the microseope canjers should not be subjected to so great a presoure, which may. pos. sibly be aubject to vibratory changee as the instrument turns apon the friction rollers. Although it is quite powsible that no sotual evil remalts from this cause, it must yet be regaried as a not improbable nource ot danger to the stemdinens of the mieroscope heiders; 1 therefore consider that it would be better to adopt come other ayatem of suppperting the inetrument; perhape apon pillars pasaing centrally through the microscope holders and set: in the pier below.
The arrangemente for olamping the miaroceopes to the aylinder leave nothing to be deotrel, providied the former are once got into their proper pocilion. But the tack of cottiaga micresoopeafter it is once disarranged is dratremoly laboriout, and rome ariditional meehaniom for ofteoting this

The acoussos arith which tho divivions se she circle are cut, and the adeptrito of itho mieromape to thoir reading, are uncioubtedify the
 first orier. I am convinced that much muat yet be dotie to mecmarathe

 in the: mamprequetion that the lifiameter of ethe, dircleyio diminthed.

It does not appear to me that the eminent conatructors of the instru. ment have ancceeded in this. In onder that 1 might reach a precise conclusion on this point, I aaker permisaion at Btrassbarg to collect the data and to make the determination necessary for a rough comparison with the Washington circle.
First, as regards errors of division, 1 found that these errors had been determined for every 5 degrees. The beat method of making a numerical eatimate of the acoidental errors of division seems to be to compare the error of each diviaion with the mean of the errors of the two adjoin. ing ones difiering by δ degrees. I examined the table of orrors througb a portion of the circle with the result that the mean error as thus determined is $0^{\prime \prime} .32$, while the maximam in $0^{\prime} .03$. It will be interenting to compare this with the Washington circle.
On page 37 of the Washington Obeervations for 1865 is foand a table of the errors of the two circles of the Washington instrument. Treating them in the same way, we find:
Washington, circle A: mean error, $0^{\prime \prime} .28$; maximam, $0^{\prime \prime} .70$.
Washington, circle B: mean error, $0^{\prime} .21$; maximum, $0^{\prime \prime} .31$.
Straesbarg circle: mean error, $0^{\prime \prime} .33$; maximum, $0^{\prime} .63$.
It will be seen that in angular position the errors of the;-8traseburg circle are in general abont the same as those of eircle Δ of the Weah. ington instrument, bat are decidedly inferior to thoee of circle \mathbf{B}, which is the one always need in astronomical observation. The diamater of the Washingtod circle is, however, about six:tonthe greater than that of the Strasebarg instrument, thus showing that in linear mescure the general ecouracy is the same in the Btramburg ingtrument and the Wanhington cirole B.
I muat, in juatioe to the Meurre. Reprold, cali attention to the fhet that this comparicon refers only to the partioniar cets of division which are diatant 5 degrees, and doen not refer. to the general excellemce of: the dividing. Both the Waehington circles exhibit e most unfortunete periodic error within each spece of δ dogrees, and amothor within each apace of $\mathbf{3 0}$ minutes or perhape one degree. In cirole B the maximum amount of this periodic error is $0^{\prime \prime} .27$, and in circle $\Delta^{4}, 0^{\prime \prime} .48$. II am not aware that any such error exints in the Repeold circle. It is proper to remark that the methodes of dividing the two inatrumente were eatirely different. In the Wavhington instrument the original diviaiong were made to every δ degrees, and the intermediate ones are all copies of the same small dividing arc used by Meesrs. Pistor and Martins for finish-

ingtruments.

astructorn of the instru1 might reach a preciee Strassbarg to collect the for a rough comparison
lat these errors had been od of making a numeri. seems to be to compare errors of the two adjoin. - table of orrore through mean error as thus deIt will be intereeting to
for 1885 is fonvd a table ton instrument. Treat.
aximum, $0^{\prime \prime} .79$.
aximum, $0^{\prime \prime} .31$.
$1 \mathrm{um}, 0^{\prime} .63$.
errors of the-AStracebarg f eircle A of the Wash. o those of circle B, which vation. The diameter of tenthe greator than that sat in linear meacure the ustrument and the Weah-
attention to the feot that the of division which are peneral excellemoe of: the It a most unfortunato peand amother withim each In circle B the maximum incle $4,0^{\prime \prime} .43_{\text {. }}$ I am not Id circle It is proper to natrumente wore entirely he original diviaiong were ones are all copices of the r and Martins for finish-
iug the divisious. On the other hand, the divisions of all the Repmold iustruments are copies of a certain large divided circle made by the foanclers of the firm more than half a ceutnry ago. The copy is, how. ever, modified to this extent: instead of easil divinion being copied, the copy is a mean of each five eonnecutive divisions on the original circle. Supposiug the copies to be absolutely perfect and the original circle to have remained unchanged, all the Repeold inatruments should exhibit the eame errors of division, but I am not aware whether the uumberiug ou thedifferent circles is made to correspond to the samedivisions of the orig. inal circles, a proceeding which would be necessary to teat the uniformity. In thie connection I may remark that during my vieit to the Repeold establichment they allowed me to examine the divisions on the original circie with the aid of a powerfal micrometer nicroscope atteched to it , aud used in making a copy. So far an I conld judge from a cursory examination there were no menaible accidental errors of division in the minute space over which my obeervations extended. If so, the errors of division in the copy mant be mainly accidental, and perhaps due to elasticity in the mounting of the cutting tool combined with irregularity in the resistance it meete with in outting the metal. Should the errors of divigion be wholly dme to this cause, we could expect no correspondence between those on dififerent instruments.

The miaroncopen are about two feet long, and their absolnte poweris, I think, comewhat less than in the Waohington instrument. It did not appear to me, however, from oxamining the divisioms, that they. would bear ang higher power with advantage. The edgee appear deffeient in straightness and sharpness, and this appearance is eraggerated by the numerous discolorations upon the silvered surface. The probable error of a alngle setting of a microscope appeared to be about double of that in the Waebington circle, or $0^{\prime} .2$ to $0^{\prime \prime} .3$ againat $0^{\prime} .10$ to $0^{\prime} .15$. From these facte. 1 am led to the concluaion that an improved ayatem in the construction of circles is a destderatum.
It is true that the necemeary probeble error of astronomical observations ariaing from nnavoidable disturbing cances is such that no great additional mocuracy in aingle observations would be obtalnable by a more sceurate reading of the oirclo. The object of increased accurwoy of reading is to fecllitate the determination of errors of division. The latter must be determined with a precision corresponding, not merely to that of a single observation, but to the mean of a great number of observations. To do this withont an enormous expenditure of lahor, the
microscopes must read with such precision that a single deteruination of each division will suffice. The greatest improvement in this direction would be made by the introduction of glass circles which have lately been proposed by several American physicists. The practicability of this innovation can; however, only be determined by experiment. Without pretending to decide, at present; whether glass or metal will prote to be the best material, I do feel that astronomers ought not to rest satisfied with a degree of accuracy 80 far behind that reached by the working physicists, who cut one or two thousand divisions to the millimeter, and space them so evenly that their inequalities defy direct méasuróment.

In thie Strassbary circle an innovation has been inade; denigned to render unineceesaty the determination of more tian a limited number of division errors. Onis of the circles is divided only to every disgter; and four of thesie degrses, distant 80 degrees from each other, are dilided to every tro mirates. Thas there are in all 480 divisions oir the circle, and the errors of these can be determined with great precision withont an inordinate expenditure of labor. With the circle thas diviled an arc of any required length can be ineasured, one of whose termini ghall lie in the degree which is finely divided; and the other on ond of the ertire degrees. To do this it is necessary to adjust the ctrolesom the axis with each observation in such way that that observation chall be maide upoin the finely divided part, while the madir or Honimontak point shall fall upon ath entirie degree. The latter point must thon be ecpunately determinied for each antronothical observationi. I canmot thinil but that

 fictory. Twe utb of a coppore biain to hold the inerciry what prepobea in Germany darly in the presedit centary, bat the cotidifloils neodedodry to render such a bieinin succesefal seem never to have' become well uris

INSTRUMENTS.

a a single determination vement in this direction rcles which bave lately
The pricticability of mined by experiment. ther glass or metal will tronomers ought not to behind that reached by ousand divisions to the inequalities defy direct
been made; devigued to Lan a limited number of ly to eviery degive; and roh other, are dilided to divisions out the circle, great precision withont - circle thus divilied an le of whowe termint bhall the other on one of the adjust the cricle on the rat obeorvation shall be ndir or thorisontak point t must then be cepparately I cannot thinily but that gailed by ith . थt Mhtis:
ponst.
intineintal obecrivitotries, ctly tulte I aid stirprised my. At sivery buthervistue nidir polit atid of
 cont of intion ranithly ohiplituted cotitivatices which ato entinuty watib-- inoreary whas propodeat the coriditions nocitimetry o have become well uti:
derstood. In its most improved forn the basin has no sides, but is simply a circular plate of metal, of whioh the upper surface, instead of being perfectly fiat, is slightly concave, the figure of the concavity being spherical. The depth at the center is but a fraction of a millimeter. The surface is copper, or the whole basin may be made of copper, becanse in contact with this metal the mercury does not roll into globules, at least when amalgamated with it. In use the top of the basin is approximately leveled with a spirit-leval. A little mercury is then poured upon it, and the surface of the meroury is gradually brughed: off, partly to remove duat and impurities and partly in order to get rid of the aurplus mercury. There is then left a layer of mercury in the center of the basin so thin that waves cannot continue on its surface. At Leyden, Professor Van de Samde Bakhuysen gave me an opportuaity to make very earefal experimentes on the worlding of the nystem. The efphericity of the bacin guarile against what has been conaidered one of tho dangers in using an arrangement of thi" |kind, namely; apossible mipute incli. mattion of the iiquid aurface arising from the coheaion between the mercury and the coppeir of the containing veasel. I found that in making: mabeorvation of the niwir point the heany walking of mien asound the reon prohinced no distarbitice whatever, and even stomping on the floes in the neighborhbod of the ingtruanent only cunsed a nomantary dinespeatrance of the refiectid imgge of the wirens.
In the application of this form of biain it is desirable that the plate should be considerably larger than the objective in order thet the layer of mercury may be equal to the latter and yet have plenty of margin artitind it on the plite.

In the nce of a vertical circle of any sort, whon the higheat preainion is aimed at, the determination of the effeots produced by the bending of the instrument in the difterent poaitions has always been one of the most dificult problemg.

The determinstion of the horizontal florno is commonly considered to oper no dificonity. The familiar method of setting the opponing collimators in moch a position that light can pass from one to the other through an opening in the central cube of the meridian citale, and then obsorving the horigontal wires in each of them with the circle, is of npireral application. Bnt even in the nimpleat case irregalaritioe and diccordances are frequently found. In the Waghington circle I traced
these discordances to the effect of refraction caused by the different temperatures of different strata of the air in the observing room and in the instrument. It is therefore absolutely necessary to success that the determination should be made when there is a perfect uniformity of temperature inside, around, and above the instrument. This was found practicable only in periods of long-continned raiu, which cooled off the roof of the building and thus prevented an accumalation of warm air in the upper part of the room.

This method has generally been employed only when the instrument was horizontal, and its application in other positions is so troubiesome that it has seldom been undertaken. At Paris, however, I found in use on the new. Bischoffsheim circle a vertionl collimator which, although apparently not intended for that purpose, conld readily be used to determine the flexure in a vertical position. The collimator itself is supported. in a horizontal position upon a standard on the east pier, around which it turns upon a vertical axis. When placed in position for use its objective is over the center of the telescope. To receive the rays from the. latter a reflecting prism is placud in front of its objeetive. Thus the result is optically the same as if the collimator looked vertically down into the telescope of the main instrument. There would be no difficulty in setting the collimator either upon its reflected image in the banin: of quicksilver below, or on another vertical teleacope below the floor. The apparatus would then be available for the determination of flexuce.

ME. LONWY'S METEOD OF MEASUELNG BLMXORE.

 An ingenlous plan has recently been proposed by. Mr. Loewy, Vicedirector of the Paris Observatory, for determining the flexure of the telescope in all positious. It has been eof fully desoribed in the Comptes Rendus and other pablications that I need only here give its general principle.A small glass instrument which combines the function of a lens and a retlector is placed in the central oube of the telescope. The foxares' of the two ends of the telescope, relatively to the refiecting surfice of this glass, are separately and independently determined in all positions of the instrument. It is assumed that the glass, beling in the neutral arits of the telescope, the astronomical effect of the flexure will be given by the difference in the flexures of the two ends relatively to the glans. Ingenions and well considered as this method is, I cannot consider it reliable for determining the effects of flexure, because it leaves ont of

Istruments.

used by the different sbserving room and in ary to success that the perfect uniformity of nent. This was found , which cooled eff the mulation of warm air
when the instrument ions is so tronblesome owever, I found in use nator which, although eadily be used to deterator itself is supported. ast pier, around which position for use its obceive the rays from the. objective. Thas the looked vertically down would be no difiliculty d image in the banin: recope below the floor. termination of flexurs.

C FLEXURE.

 od by Mr. Loewy, vice.. ng the flexare of the seoribed in the Comptes here give its general

function of a lens and lescope. The ferures' he refiecting surtace of mined in all positions of ing in the neutral arits lexure will be given by relatively to the glais. is, I cannot consider it secause it leares ont of
account the bending of the parts of the instrument between the central cube and the divisions on the circle. In the Washington circle there is a well-marked flexure of the circle itself, which may be expressed by saying that if the central cube revolves uniformly the circumference of the circle does not revolve uniforuly but is affected with a periodic inequality. Hence, to make the determination free from all sources of error, the flexnre must be determined by a direct comparison of the optical axis of the telescope with the reading of the circle alivisions under the microscopes. This can be done only by pairs of opposing collimators on the usual or Besselian plan, or on some other plan by which rass can be sent in the same straight line in two opposite directions.

COLLIMATORS AND MFRIDIAN MARKE.

The old-fashioned system of placing meridian marks at such a distance that they could be observed throngh the telescope of the transit sircle without changing the astronomical focus may be regaried as now ontirely abandoned, owing to the bad effect produced on the imagea by the paesage of the light through several miles of air near the ground. The preeent system is to place the meridian mark at a distance of 100 or 200 yards and to remder the raye emanating from it parallel by a lons of long focus. The plan of putting this lens as a cap over the objective has been abaudoned, owing to ite diaplacement of the optical center of the combined aystem of the lens and the objeot-giasa. It is therefore usually fized on top of a pier. Bnt at Straseburg a differont syotem is adopted. No lens of long focus is ased at all, but the telescope is pointed directly upon the meridian mark and the rays are brought to a focus in the plane of the apider lines by means of a lens of ehort focus which can be alid into the eye-piece of the telewcope. On this plan the pouition of the image will depend upon that of the small lens-a dependence which I think ought to be avoided. The best system erems to me to be that of the fised objective of long focus.

At Strwesburg the fxity of the meridian mark is ascured by supporting it on \otimes very firm atone fonndation and protecting it by a freme building from the rayls of the sinn. The mecemity of theme precsations is too - obvious to require any comment apon thom.

At Paris a very ingenions aystem of reflecting collimators is applied to the great trausit circle. As, however, this aystem was probably adopted only becanse there was no room for collimators of the usual construction, I did not deem it necessary to prepare a description of

24

 IMPROVEMEATTS IN ASORONOMICAL INETRUMENTE.them. A system of fiducial lines which may be adopted with advantage in ordinary collimators is, however, worthy of note. Instead of setting one spider line apon the image of another, the spider line in one collimator is replaced by a fine trausparent line through a narrow band of some opaque substance on a plate of glass. Thus when the observer looks at the image of this band in the other collimator he sees in the center of the field a fine horizontal or vertical bright line on which he can set the dark line of his collimator with great precision. This plan does not, however, so far as I can see, readily permit the setting to be made by means of the dark band collimator. Whether this limitation is a serions defect is a question on whioh opinions may differ.

OBSERVATORY BUILDINGE.

In the conrse of my journey I had the opportunity of visiting two new observatories of the first class erected within the past fow jears: one, the Imperial Observatory at Fienna, the other the Astroi. Phynieal Observatory at Potsiam. It is generally necessary to design an observatory with especial reference to the oharacter of the obvervatimins to be made and the objects to be pursued. To this may be added the frequent mecessity for gratifying some pablio taste with reapect to anchitecture. For these reasons one obsenvatory cannot well serve as a model for another; but there are certain special features whish would work equally well under nearly all conditions, and which are therefore worthy of conaideration in building any observatory.
In the Vienna Obwervatory the architcetural element predeminatee. I did not observe ang new. feature of eqpepial importance to the deringrers of future observatorice except those already noted: "1 ; is int strivt
: "The Potidem Observatory, as its iname implies, was decigned, with especial reference to physical observations inpon the heavenly ibodito. This branch of siatrenomy in its presont dovalopmens io po new ithat every cetablishment for prosecuting it has to be planned with reforence to the special werk to bo done. Hence, netwillatanding that the observatory in queation is, in its ontathacil desigry one ef the mont perfest yet built, those features of it which it would be imdvicable toinneogporate in another entablishment, built perhape for another parpose; would genorally ocour to the designers of wahan entablichment. The following are, however, well worthy of comoideration in all plans of now obworvatories.

The effect of the cun's rags upos the metal roof of the building is to heat
the air in immediate contact with the roof and thas to injure the ciefinition of the heavenly body seen from within the observing rooms in the daytime. To avoid this dificulty the roof is covered with soil and sodded with green turf and thus kept as cool as the surrounding air, how hot soever the sun's rays may be. It is of course necessary to keep the turf watered. Possibly any other aboorbent snbstance might answer the parpose of the turf, but the latter has at least the advantage of cheapness.

It is a common feature of all, or nearly all the continental observatories, that quarters are provided for the astronomers, generally in the building itself. This offers the great advantage that the astronomers are nearly always near their instruments, and may be regarded as absolnteiy essential to the efficiency of any large observatory, especially if it is not in the midst of a city. At Petsdam the houses of some of the astronomers are separated from the building, but the general rule is that the building accommodates the director and such of the assistants as are engaged in actual observations, together with their families. This collection of several families in the same building is more accordant with European habits than with our own, and the question of its introduction mong us can be settied only by careful consideration. I can only ary that I noticed no serions inconvenience arising from it.

OLOOKS.

In most astronomical work of the first class, especially in meridian sbecrvations, the perfection of the clock is as necesuary as that of any other instirument. But it seems to be an observed frect that no certain way has yet been found of securing an approach to perfection in the rate of the clock. All we can may is, that clocks of marrelous excellence are now and then made, sometimes by one maker and sometimes by another, and that of these clocks some are permanently good while others, in the courve of time, detcriosate. I found a few exmmples of clocks preeerving their rate with remarkable uniformity through considerable periods. One of theae is the Normal clock of the Berlin Obeervatory, made by Trede. It is inclosed in an air-tight case in order to prevent changes of rate ariaing from variations in the barometric preseure. The temperature compensation is unfortunately imperfect, so that the rate is subject to an annual change. This fact has prevented the exact discussion to which I desired to subject it. It would seem, however, from a curcory examination, the materials for which were courteously afioried me S. Ex. $96-3$
by Professor Förster, that the annual change from temperature does not exceed 10 or 15 seconds per year, and that when this is allowed for the differences between the actual and the compated exrors will be a very few seconds per year. In recent times the clocks furnished by Howhil, of Amaterdam, have secured a reputation for uniform excellence which has never been surpassed; that is, instead of being able to occeaionally turn out a clock of remarkable excellence, all the olocks of this artist, wo far as they have been discussed, are of the first class.

The following exhibit of the observed and computed errors of one of his clocks through a period of nearly two years has been selected, not from.a belief that this particular clock was, better than others, but because the data for the examination were at hand:

Comparison of the observed and computed correotione of Clook Eiowh 2:, at the observatory of Leyiew, 1805, Deoember 1, ta. 1807; Dateter 25.

$\mathbf{T}=$ tomperature, cont.:
$\mathrm{B}=$ helght of berometor.]

	Correction.		
	Observed.	Computed.	Difierence.
1865.	*	e.	- 0
Dev. 1	20.9	20.9	0.0
Dev. 29	56.3	54.8	+1.5
1866.			
Jan. 26	89.1	84.2	$+4.9$
Fab. 23.	110.8	118.1.	+18.7
Mar. 30	261.1	148.0	+13.1
, Apr. 27	188.9	$\therefore 178.5$	6.4 4 :
May 25	215.3	195.5	+19.8
Jrae 29-	238. 5	216.0	+190.6
July 27	249.7	231.7	+18.0
Aug. 31	265.0	203. 3	+18.7
Sopto 88	277.9	270.0	$+7.9$
00t. 23	297.4	293.4	+4.0
Now. 30,	397.8	398.	1.3
Dec. 28	356.9	355.9	+1.0
11.1807.		.	\%
Jan, 25	385.2	306.5	-1.3
Nob. 88	414.3	416.1	-1.8
Mer, 29	458.2	454.5	-2.3
Apr. 23	476.1	479.1	-3.0
May 31	505.8	$505,3$.	$+0.5$
June 98	524.7	892.9	$+1.8$
July 20	540.8	539.4	+1.4
Aug 30	559.9	559.5	$+0.4$
Oept. 87	576.4 594.6	577.2 600.6	- 1.8 -6.0

In this connection I may be allowed to call attoniin n to the unsatis. factory character of the data asually presented tor estimating the ex. cellence of clocks. In my judgment the estimate of the cloci should owed for be a very Howhil, 100 which caionally artist, 0 of one of roted, not , but be.
be fonnded aponits errors, determined from time to time through a period of not less than a year. These errors should be exhibited in connection with the mean temperature of the clock-room, and if the clock is not in an air-tight case the height of the barometer should also be given. A calculated error should then be carried throngh the whole period, in which the correctious for temperature and height of the barom. eter should be introduced. A clock which stands this test well may be presumed beyond doubt to keep its rate during short intervals, which is generally the important point.
It is very common to present as sufficient data for judging of a clook an exhibit of its daily rates from time to time. If these rates were really determined with the last degree of accuracy they might be sufficient for the parpose. But as found in practice they will be the result, not merely of the actual rates of the clock, but of varions personal difierences among the observers and changes in the pointing of the instrument as well as the accidental errors of observation. From these causes, although the clock were perfect, we might expect an apparent difference of several handredths of a second between its apparent rate on successive days.
The barometric change in the rates of all clocks of the usual construction is so important a drawback that it should no longer be tolerated in work of the first class. Two methods have been proposed : the one, that already mentioned, of inclosing the clock in an air-tight case; the other, to supply it with a baromelitic compensation. The latter method is undonbtedily the casient, but where the necessary perfection of arrangements can be secured the former must be considered greatly preferable. The grounds of preference are that the air can be exhausted from the case to any extent, thus diminishing its recistance to the motion of the pendulum and permitting a diminution in the driving power. Again, if, instead of air, the case be filled with some gas which does not act on the oil, the slow oxidation of the latter mas be prevented. It may therefore be expected that under this aystem a clock could be allowed to remain undisturbed for a longer period than under any other.

Very respectfally, your obedient servant,
SIMON NEWOOMB,
Professor, United States Navy.
Hon. W. E. Ohandler, Secretary of the Nary.

3
es

